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B R E A K I N G  OF G R A V I T Y  WAVES IN A N E I G H B O R H O O D  

OF T H E I R  S E C O N D  C R I T I C A L  P R O P A G A T I O N  S P E E D  

V. I. Bukreev,  E. M. Romanov,  and N. P. Turanov UDC 532.59 

Experimental data on gravity shallow-water waves generated by a vertical plate moving in a 
predetermined manner are given. The plate completely covers the cross section of the channel. 
It is found that with when the wave speed ezceeds the first critical value known in hydraulics, 
the wave retains smoothness. Breaking of the waves begins at the second critical speed (which is 
about 1.3 times as high), whose value coincides with the limiting propagation speed of a solitary 
wave. 

For a liquid layer at rest above an even horizontal bottom, there are, at least, two critical propagation 
speeds of gravity waves: cl = x / ~  and c2 = ~ V ~  (g is the acceleration of gravity, h is the depth of the layer, 
a n d / / >  1). The second critical speed c2 was detected by a theoretical analysis of solitary waves of limiting 
amplitude. Different mathematical  models give different values of /L  The second approximation of shallow- 
water theory yields ~ = v/~ [1]. Using the complete equations of potential flow of a liquid, Longuet-Higgins 
and Fenton [2] obtained/~ = 1.294. The experiments of [3-5] showed that cz is critical not only for solitary 
waves and that the second of the indicated values of/~ is more accurate. In neighborhoods of q and c2, the 
wave pattern changes greatly. In particular, the waves can break. 

The present paper is a continuation of [5]. Here the emphasis is on the transition of smooth waves to 
breaking waves in a neighborhood of cz. Breaking of waves is a good object for experimental investigation 
of the fundamental problem of transition from order to partial or full chaos. In this case, it is much easier 
to combine tool measurements with visual observations than, for example, in studies of laminar-turbulent 
transition in a pipe or a boundary layer. 

In the methodical respect,  the experiments described here are similar to those in [5]. A rectangular 
channel with a horizontal bottom of length L = 3.8 m and width 20 cm was filled with water at room 
temperature. Waves were generated by translational displacement of one of the butt-end walls of the channel. 
The term "butt-end wall" is used here for the particular case of translational motion of the vertical plate 
which completely covers the cross section of the channel. This case is similar to the classical gas-dynamic 
problem of motion of a piston in a pipe with a compressible gas. The following law of motion of the wall is 
specified: 

f U t +  UTl[exp(- t /T1)  - 11 at 0 ~< t < T2, •,(t) l at t /> Tz, y.,  z. = const. 

Here t is the time, x. ,  Y*, and z. are the coordinates of an arbitrary point of the moving wall, and U, TI, 
T2, and l are parameters. We used a fixed rectangular coordinate system z, y, z with origin on the line of 
intersection of the undisturbed free surface of the water and the moving wall at t = 0. The x axis is directed 
to the fixed butt-end wall of the channel, and the z axis is directed vertically upward. Only three of the four 
parameters of the law of motion are independent. In the experiments, T2 >> 7"1, and we can assume with good 
accuracy that l = U(T2 - T1). 
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The departure of the free surface of the water from the position of equilibrium T/ was measured by 
fixed wavemeters. Signals from the wavemeters were delivered to a specialized HISTOMAT-S computer and 
recorded by recorders. As long as the waves remained stable, they were plane, and, hence, the function T/ 
depended on z, t, and the four basic dimensionless parameters: L/h, U/V~, T I ~ ,  and T 2 V / ~ .  Below, 
information is given only for those t for which the reflected waves have not yet reached the  point x considered 
and the influence of the parameter  L/h has not been manifested. After loss of stability and breaking of the 
waves, fluctuations of T/with respect to =, y, and t occurred, and the effect of physical quantities such as the 
density, viscosity, and compressibility of water and air and the surface-tension coefficient became pronounced. 

We studied nonstat ionary waves. For nonstationary waves, it is necessary to define expressly the notion 
of the propagation speed c. In the experiments, c was determined as the speed of longitudinal motion of that 
point at the leading edge of the wave for which r /=  r/m/2, where r/m is the height of the first crest (Fig. 1). The 
value of c was calculated from the t ime At required for this point to travel the distance A= = 10 cm between 
two fixed wavemeters. From results of repeated measurements under the same conditions, it was found that  
the relative standard deviation was not higher than 1.5% for r/m and 1% for c. The standard deviation of the 
derivative e%//~ reached 10%. 

Experiments were performed for several combinations of the parameters of the problem. Typical results 
are discussed in greater detail for an experiment with h = 3.06 cm, U/V~ = 0.425, T 1 V / ~  = 2.15, and 

T 2 ~ / ~  = 33.7 (l/h = 13.4). Figure 1 shows the dependence of T/on to - t for several fixed values of z. 
Here to is the t ime during which the point of the leading edge with T/= r/m/2 reaches the point x considered 
(h = 3.06 cm, U = 23.3 cm/sec,  T1 = 0.12 sec, and T2 = 1.88 sec). In this case, at = = (110 -I- 5) cm, the first 
crest sharpened so tha t  a portion of the liquid began to slide off the leading edge. At this instant, c = c2 with 
good accuracy, and the height of the first crest has almost the largest value. Further,  the rate of breaking 
increased rapidly, and at = > 140 cm, the head of the wave became similar to a classical hydraulic jump.  

The evolution of the leading edge and first crest of the perturbation is illustrated in Fig. 2 in a 
coordinate system at tached to the.point  T/= r/m/2. The parameter  values are the same as in Fig. 1; curves 
1-5 correspond to x/h = 16.3, 35.9, 39.2, 45.8, and 56.7. Breaking began at =/h = 35.9 and became fully 
developed at x/h = 45.8. It is noteworthy that  during development of the instability, the leading edge changed 
only slightly. The  derivative (1/c2)O~/at changed more markedly, as shown in Fig. 3 (the parameter values 
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are the same as in Fig. 2). A sensitive indication of the presence of instability is fluctuation of the derivative. 
Figure 3 shows that  at z /h  = 35.9, the plot of the derivative still remains smooth, and at z/h = 39.2, there 
are noticeable fluctuations in it. 

At the beginning of breaking, the largest value of the dimensionless derivative was 0.43 4- 0.05. In the 
dimensionless form adopted here, the derivative characterizes the slope of the free surface to the horizon. 
Measurements for other combinations of the parameters of the problem gave approximately the same value 
of the limiting slope of the leading edge (with the indicated measurement error). 

Figure 4 gives information on the travel time ti(z) for a number of characteristic points on the wave 
profile. The number 0 is assigned to the point with r I = ~/m/2 (this is the previously determined to), and 
numbers 1-5 are assigned to wave crests beginning from the first crest at the leading edge. The slope of the 
straight line a to the axis ti is equal to c2. The parameter values are the same as in Fig. 1. Analysis of ti(z) 
showed that the points 0 and 1 moved at a subcritical speed for z/h < 35.9 and at a supercritical speed 
for z/h > 35.9. In the interval 38 < z/h < 65, the propagation speed of the second and third crests was 
3-5% higher than c2, and outside of this interval it was lower than c2. The fourth and fifth crests moved at 
subcritical speeds all the time. 

The effect of various parameters on the process of transition through c2 is illustrated in Fig. 5, which 
shows the dependences of the height of the first crest T/m and the propagation speed c of the point with 11 -- 

rim/2 on ~. Points 1-3 correspond to h = 3, 3.06, and 2 cm, U / v / ~  -- 0.509, 0.425, and 0.422, T1 9 ~  -- 4.16, 

and 3.77, and T2 g ~ - h  = 17.90, 33.66, and 52.27. In transition through the first critical speed c], the 2.15, 
waves remained stable and smooth in all three examples. Interestingly, with approach to c2 from below, the 
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increase in the speed c was markedly decelerated and the height r/,~ continued to increase monotonically. The 
deceleration of increase in c is especially pronounced for curve 1. Figuratively speaking, the liquid accumulated 
ahead of the invisible barrier c = cz and then broke through it, and the speed c increased sharply again. 
Visual observations and data  on the derivative arl/Ot showed that at precisely this moment the breaking 
process began. The largest value of r/m was attained somewhat Inter than the beginning of transition to the 
supercritical region of c. A similar result has been obtained [2] by a theoretical analysis of solitary waves of 
limiting amplitude. 

For the method of wave generation adopted here, replenishment of the wave energy was performed only 
at t < 7"2, whereas in breaking, a major portion of the mechanical energy of waves dissipated in heat. Therefore, 
in the supercritical region, the speed c reached a certain largest value and then decreased nonmonotonically. 
Fluctuations of the propagation speed of the leading edge of a breaking wave are known for n classical hydraulic 
jump. 

In Fig. 5 (points 1), e approaches c2 again from above, i.e., from the supercritical region. It is interesting 
that, despite the energy dissipation, the constant value c = c2 was retained on a rather large interval z/h. On 
this interval, the reverse transition from a breaking wave to a smooth wave was observed. 

The available insufficient information on the complex process of wave breaking in a neighborhood of 
c2 can be generalized as follows. 

In a sense, c2 is more critical than cl. In particular, when c > c2, the possibilities of such a stabilizing 
factor as the dispersion of small-amplitude harmonic waves are exhausted. In a neighborhood of Cl, the loss 
of stability appears to follow a severe rigid type, i.e., the perturbation intensity should exceed a rather large 
threshold value. In a neighborhood of c2, the situation is different. It appears that here the loss of stability 
follows a mild pattern, i.e., theoretically infinitesimal perturbations are sufficient for the development of 
instability. In the region cl < c < c2, there are smooth stationary waves such as cnoidal, solitary, or monoclinic 
waves. The existence of smooth stationary waves with c > c2 is questionable. 

Under certain conditions, the nonstationarity of waves can counteract the development of instability. 
The experiments performed have shown that for c > c2, the effect of this factor is also weaker than for 
c < c2. In experiments with c < c2, it is easy to generate nonstationary waves that  remain smooth up to 
complete degeneration because of molecular viscosity. In the region e > c2, it is difficult to prevent breaking 
of nonstationary waves even in a physical experiment, where another strong stabilizing factor -- surface 
tension - -  operates. We detected two cases where nonstationary waves with c > c2 d id  not break. One of 
these cases is reported in [6]. With certain stipulations, the fact tha~ the second and third crests of the wave in 
Fig. 1 propagated at c > c2 and did not break can be regarded as the second example. In a private discussion, 
V. Yu. Lynpidevskii noted that  the nonstationarity in this case manifests itself as a general change of the 
wave of a complex shape, so that  its second and subsequent crests spread over the perturbed liquid. Visual 
observations showed that ,  although the second and third crests did not break, they were also unstable. The 
instability manifested itself in the existence of relatively small three-dimensional perturbations against the 
background of the main wave. 

Surface tension is a fundamentally important stabilizing factor for both c < c2 and c > c2. It is known 
that when surface tension is ignored, the steady shear flow of two immiscible liquids of different density is 
absolutely unstable by the Kelvin-Helrnholtz mechanism: no matter  how small the difference in speed between 
the liquids, there are infinitesimal perturbations that grow with time, drawing energy from the main flow. The 
water-air system is not an exception, and only surface tension ensures stability of gravity waves on water even 
in the region c < el. In a neighborhood of c2, the effect of surface tension becomes even more pronounced. It 
hinders sharpening of wave crests and greatly affects the entrainment of air in water during wave breaking. 

In a neighborhood of c2, at least three destabilizing factors operate. The first is the growth of 
infinitesimal perturbations. In our experiments, these perturbations originated on the butt-end walls of the 
channel and appeared as oblique waves against the background of the main wave. The growth of small 
perturbations was hindered by surface tension, and they did not lead to breaking. A second factor is sharpening 
of the wave crests similar to the sharpening that occurs in the limiting Stokes wave. In the experiments, at a 
certain stage of the process of sharpening, a portion of the liquid slid off the crest along the leading edge of the 
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T A B L E  1 

Values of the Function rl(t - t . )  for h = 3.06 cm, U = 23.3 cm/sec ,  T1 = 0.12 sec, and T2 = 1.88 sec 

x = 50 cm, t .  = 0.6 sec 

0.040 

0.81 
1.12 
1.43 
1.58 
1.60 
1.60 
1.65 
1.02 

- 0 . 0 4  

0.05 
1.07 
1.11 
1.39 
1.60 
1.61 
1.61 
1.65 
0.76 

-0.03 

0.08 
1.36 
1.20 
1.44 
1.59 
1.62 
1.61 
1.65 
0.52 
0.04 

0.12 
1.60 
1.34 
1.51 
1.59 
1.61 
1.62 
1.64 
0.27 
0.16 

0.19 
1.67 
1.53 
1.60 
1.58 
1.59 
1.62 
1.51 
0.10 
0.25 

0.28 
1.57 
1.60 
1.57 
1.57 
1.58 
1.63 
1.54 
0.00 
0.22 

0.40 

1.38 
1.56 
1.50 
1.55 
1.58 
1.64 
1.41 

- 0 . 0 7  
0.19 

0.58 
1.21 
1.50 
1.52 
1.57 
1.59 
1.64 
1.24 

- 0 . 0 7  
0 . I0  

x = 110 cm, t .  = 1.4 sec 

0.00 
0.06 
2.10 
1.21 
1.27 
1.34 
1.41 
1.30 
1.02 
0.55 
0.22 
0.10 

0.00 
0.I0 
1.79 
1.59 
1.36 
1.36 
1.41 
1.37 
0.93 
0.49 
0.19 
0.08 

0.01 
0.18 
1.43 
1.80 
1.43 
1.43 
1.48 
1.42 
0.82 
0.45 
0.16 
0.05 

0.02 
0.31 
1.15 
1.79 
!.61 
1.53 
1.59 
1.33 
0.73 
0.40 
0.13 
0.02 

0.02 
0.51 
0.98 
1.65 
1.65 
1.71 
1.63 
1.22 
0.68 
0.36 
0.22 

- 0 . 0 1  

0.02 
0.81 
0.85 
1.36 
1.55 
1.74 
1.55 
1.10 
0.64 
0.32 
0.19 

-0.03 

0.03 
1.26 
0.85 
1.29 
1.49 
1.55 
1.44 
1.03 
0.63 
0.27 
0.16 

0.04 
1.87 
1.10 
1.20 
1.43 
1.43 
1.34 
1.02 
0.61 
0.25 
0.13 

x = 250 cm, t .  = 3.4 sec 

0.02 
1.30 
1.35 
1.09 
1.33 
1.31 
0.82 
1.01 
0.59 
0.57 
0.43 
0.34 
0.26 
0.14 

0.03 
1.54 
1.44 
1.I0 
1.15 
1.40 
0.84 
1.00 
0.53 
0.57 
0.38 
0.33 
0.27 
0.14 

0.03 
1.60 
1.55 
1.21 
1.04 
1.42 
0.85 
0.93 
0.50 
0.57 
0.32 
0.30 
0.26 
0.14 

N o t e .  The  a rgumen t  t increases 
from t . .  

0.04 
1.55 
1.61 
1.42 
0.98 
1.33 
0.83 
0.83 
0.52 
0.58 
0.29 
0.26 
0.24 
0.11 

from 

0.10 
1.43 
1.57 
1.61 
1.00 
1.18 
0.82 
0.76 
0.55 
0.58 
0.28 
0.23 
0.20 
0.05 

left to  r ight  in 

0.20 
1.32 
1.44 
1.70 
1.08 
1.04 
0.85 
0.72 
0.58 
0.56 
0.28 
0.21 
0.17 
0.01 

0.36 
1.26 
1.29 
1.67 
1.17 
0.93 
0.90 
0.69 
0.59 
0.53 
0.31 
0.22 
0.14 
0.00 

0.67 
1.29 
1.16 
1.53 
1.25 
0.85 
0.96 
0.65 
0.58 
0.48 
0.34 
0.24 
0.13 
0.01 

the  rows with  a s tep At  ---- 0.02 beginning 
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wave like an avalanche. A third destabilizing factor is the nonlinear effect due to the fact that the propagation 
speed of the leading edge of the traveling wave increases from the trough to the crest. With attainment of a 
certain limiting slope, for which a measure can be the above-mentioned derivative, overturning of the leading 
edge with intense mixing of water and air occurred in the experiments. 

The indicated mechanisms for the loss of stability have been analyzed theoretically for waves of specific 
types, for example, steady waves. Theory gives well-defined relations between wave characteristics such as the 
length, amplitude, slope, etc. In this case, it makes no sense to discuss which characteristic should be preferred 
in the detection of critical situations. The notion of a critical wave number is most frequently used for linear 
harmonic waves, the notion of a limiting amplitude is used for solitary waves, and the notion of a limiting 
slope for highly nonlinear waves. However, for waves of a more general type, including the waves considered in 
the present paper, the choice of an appropriate characteristic is significanct. Of course, in this case too, there is 
a relationship between various characteristics, but it is not universal and, as a rule, is not known beforehand. 
For example, in the experiments, the limiting height of the first wave crest depended on the combination of the 
initial parameters and was either larger or smaller than the limiting amplitude of a solitary wave, (Fig. 5). At 
the same time, the propagation speed at which breaking began was the same and equal to c2, the maximum 
propagation speed of a solitary wave. This versatility has a fundamental physical basis and can be used as a 
postulate for various purposes. 

In most of the modern analytical and numerical methods used to investigate gravity waves, smooth and 
discontinuous solutions of equations are studied independently of each other. Calculations for smooth waves 
are performed up to the moment of loss of stability, and in calculations of discontinuous waves, the initial data 
are specified ignoring their previous evolution in a smooth form. Lyapidevskii [7] proposed a mathematical 
model that permits describing the development of a perturbation from a state of rest to breaking waves. The 
problem of the motion of the butt-end wall of a channel is a good object for testing such models. Therefore, 
we give a table of experimental data for the function ~(t - t,), where t,  is such that r I = 0 for t < t, .  

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 95-01- 
01164). 
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